Structural Models used to Evaluate

GMSM Methods

Curt B. Haselton - PhD Candidate, Stanford University
Abbie B. Liel - PhD Candidate, Stanford University
Christine Goulet - PhD Candidate, University of California Los Angeles
Farzin Zareian - Assistant Professor, University of California Irvine
Erol Kalkan - California Geological Survey
Tony Yang - Postdoctoral Fellow, UC Berkeley
Colleen McQuoid - PhD Candidate, UC Berkeley
Jack P. Moehle - Professor, UC Berkeley

Purpose and Goal

\Rightarrow Develop a representative set of structural models.
\Rightarrow Use these models to evaluate various GMSM methods, to determine which methods work best for which types of structures.

Building 1: 4-story RC SMF

$\Rightarrow 4$-story perimeter frame, 30 ' bay widths, designed to have strength and stiffness distribution expected in practice
\Rightarrow Design Code: 2003 IBC
\Rightarrow Design base shear of 9% of weight

Building 1: Structural Modeling

Building 1: Structural Modeling

Model calibrated to 255 flexurally dominated test from PEER Structural Performance Database (Berry and Eberhard)

Model Parameters to be Predicted:

- Strength (easiest)
- Initial stiffness
- Post-yield stiffness
- Plastic rotation capacity
- Negative post-cap slope
- Cyclic deterioration rate
a_{sI} - bond-
slip - 0 or 1

MPa

Building 1: Period and Static Pushover

$\Rightarrow \quad \mathrm{T}_{1}-\mathrm{T}_{3}(\mathrm{sec})=0.97,0.35,0.18$
$\Rightarrow \quad$ Mass participation for modes 1-3: $0.81,0.12,0.06$

Building 1: Collapse Video

\Rightarrow Loma Prieta motion (Gilroy array \#3 station) scaled to intensity that just causes structural collapse.

Building 1: Collapse Modes

\Rightarrow Nonlinear dynamic failure modes

(a) 40% of collapses

(c) 17% of collapses (PO)

(e) 5% of collapses

(b) 27% of collapses

(d) 12% of collapses

(f) 2% of collapses

Summary of Buildings (16 total)

\Rightarrow RC Frames (Haselton, Liel, Dean, Deierlein, ATC-63):
\Rightarrow Buildings:
$\Rightarrow 4-, 12-, 20$-story ductile SMF (2003 design)
\Rightarrow 12-story weak story SMF (2003 design)
\Rightarrow 12-story non-ductile (1967 design)
\Rightarrow Models: 2D frames modeled using OpenSees (consistent with 4-story RC SMF)
\Rightarrow Steel Frame Instrumented Buildings (Kalkan, CSMIP):
\Rightarrow 6- and 13-story (1975 era)
$\Rightarrow 2 \mathrm{D}$ frames modeled using OpenSees - fiber elements
\Rightarrow 19-story (1967 era)
\Rightarrow Building includes moment frames and X-braced steel frames, layout indicates possible torsion
\Rightarrow 3D frame modeled using OpenSees - fiber elements and truss elements for braces

Summary of Buildings (16 total)

\Rightarrow Generic Frames and RC Walls (Zareian):
\Rightarrow Two 12-story ductile frames (fundamental periods of 1.2 s and 2.4 s)
$\Rightarrow 12$-story ductile planar RC walls (fundamental periods of 0.6 s and 1.2 s)
\Rightarrow 2D frames/walls modeled using Drain (similarly to 4-story RC SMF)
\Rightarrow RC Shear Walls (Haselton, Takagi, ATC-63)
\Rightarrow 12-story special core wall (2003 design)
$\Rightarrow 2 \mathrm{D}$ wall modeled using OpenSees
\Rightarrow Tall Building Initiative (Yang, McQuiod, Moehle, Tall Building Initiative)
$\Rightarrow 28$ and 34 story RC frames (2D frames modeled using OpenSees - fiber elements)
$\Rightarrow 48$ story core shear wall (3D wall modeled using Perform3D - details to follow)

Tall Buildings - 48 story shear wall

$\Rightarrow 48$ story shear wall building (43 stories and 420' above ground)
\Rightarrow Actual building under construction
\Rightarrow Dimensions changed to protect identity of building

48 Story Wall - Perform3D Model

Elastic shear wall elements

[Slide content from Yang/McQuoid/Moehle]

48 Story Wall - Perform3D Model

Elastic shear wall elements

[Slide content from Yang/McQuoid/Moehle]

48 Story Wall - Perform3D Model

Elastic shear wall elements

[Slide content from Yang/McQuoid/Moehle]

48 Story Wall - Perform3D Model

Inelastic shear wall elements
 (flexurally inelastic, elastic shear behavior)

[Slide content from Yang/McQuoid/Moehle]

48 Story Wall - Perform3D Model

Inelastic shear wall elements
 (flexurally inelastic, elastic shear behavior)

[Slide content from Yang/McQuoid/Moehle]

48 Story Wall - Perform3D Model

Inelastic shear wall elements
 (flexurally inelastic, elastic shear behavior)

48 Story Wall - Perform3D Model

\Rightarrow Parking garage slab diaphragms (10", 12")
\Rightarrow Modeled with elastic shell elements (bending and membrane action)

48 Story Wall - Perform3D Model

\Rightarrow Basement walls (10"-22" thick)
 \Rightarrow Modeled with elastic shear wall elements

Closing

\Rightarrow Thank you for your attention.
\Rightarrow I would appreciate any questions or suggestions.

